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Abstract
More than 50% of water supplies in the conterminous United States originate on forestland or

rangeland and are potentially under increasing stress as a result of larger and more severe wild-

fires. Little is known, however, about the long‐term impacts of fire on annual water yield and

the role of climate variability within this context. We here propose a framework for evaluating

wildland fire impacts on streamflow that combines double‐mass analysis with new methods

(change point analysis, climate elasticity modeling, and process‐based modeling) to distinguish

between multiyear fire and climate impacts. The framework captures a wide range of fire types,

watersheds characteristics, and climate conditions using streamflow data, as opposed to other

approaches requiring paired watersheds. The process is illustrated with three case studies. A

watershed in Arizona experienced a +266% increase in annual water yield in the 5 years after a

wildfire, where +219% was attributed to wildfire and +24% to precipitation trends. In contrast,

a California watershed had a lower (−64%) post‐fire net water yield, comprised of enhanced flow

(+38%) attributed to wildfire offset (−102%) by lower precipitation in the post‐fire period.

Changes in streamflow within a watershed in South Carolina had no apparent link to periods of

prescribed burning but matched a very wet winter and reports of storm damage. The presented

framework is unique in its ability to detect and quantify fire or other disturbances, even if the date

or nature of the disturbance event is uncertain, and regardless of precipitation trends.
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1 | INTRODUCTION

Concerns about wildfire impacts on water supply have grown in recent

years as a result of longer wildfire seasons and increasing annual area

burned (Neary, Ryan, & DeBano, 2005; Bladon, Emelko, Silins, & Stone,

2014). Reliable water supply is a critical ecosystem service of forests

and rangelands, where more than 50% of freshwater supply in the

conterminous United States (CONUS) originates (Brown, Hobbins, &
wileyonlinelibrary.com/journal/e
Ramirez, 2008; Sun et al., 2015a). In these areas, fire impacts on peak

flows, base flows, and annual water yields can last for years and poten-

tially affect downstream municipal water supplies (Shakesby & Doerr,

2006; Silins et al., 2014), and this is a critical issue given the increasing

demand for water. Wildfire can disrupt the hydrologic cycle in several

ways. The formation of an ash layer or hydrophobic layer may inhibit

infiltration and reduce lateral flow in the soil (DeBano, 2000; Jung,

Hogue, Rademacher, & Meixner, 2009), while evapotranspiration (ET)
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can decline as a result of canopy loss. Canopy loss increases net precip-

itation at the surface (Helvey & Patric, 1965; National Research Coun-

cil, 2008), leading to more surface runoff and accelerated storm flow.

Examples are known in the western US of increases in storm runoff

between 9% and 88% (Jung et al., 2009), and annual yield increases

in the first post‐fire year between 50% and 200% (Helvey, 1980;

Troendle & Bevenger, 1996; Bart, 2016); however, these effects vary

by geographic region and depend on pre‐fire conditions, fire severity,

and post‐fire climate (Neary et al., 2005). ET may decline for several

months even after a low severity prescribed fire (Clark, Skowronski,

Gallagher, Renninger, & Schäfer, 2012; Renniger, Clark, Skowronski,

& Schäfer, 2013). Given the importance of ET for the water balance

(Sun et al., 2015a, 2015b), this may alter streamflow response

depending on local conditions. Yet in absence of any widely applicable

approach to link streamflow variations to fire disturbance, impacts on

streamflow remain largely unquantified across broad regions.

Paired watershed analysis has long been the standard for quantify-

ing multiyear disturbance impacts (Bosch & Hewlett, 1982); however, a

lack of comparable conditions between watersheds often limits the

analysis to local data. Double‐mass analysis (Merriam, 1937; Searcy &

Hardison, 1960) requires only local data and assumes an approximately

linear relationship between, for example, precipitation and streamflow

when there are no changes in climate, land cover, or water withdrawals

and has been used to assess streamflow changes after fire (e.g., Ander-

son, 1955), forest harvesting, mountain pine beetle infestations (Wei &

Zhang, 2010; Zhang & Wei, 2012), and urbanization (Hao et al., 2015).

The assumption of linearity represents a limitation of double‐mass anal-

ysis because when gradual disturbances overlap, it is difficult to identify

the undisturbed state of a system (Glenn‐Lewin, Peet, & Veblen, 1992;

Temperli, Bugmann, & Elkin, 2013). Time series analysis now features

methods such as change point analysis (Hawkins, Qiu, & Kang, 2003;

Hawkins & Zamba, 2005; Wang, Chen, & Yu, 2016) to identify the

timing of significant change in the location and scale of a time series

rather than relying on a second variable like the double‐mass analysis

and has been applied in various climate and hydrological studies (Yang,

Chen, Xu, & Zhang, 2009; Huang, Xia, Guo, & Yang, 2014; Matsuyama,

Marengo, Obregon, & Nobre, 2002; Vivès & Jones, 2005; Caldwell

et al., 2016). The simultaneous effect of climate variability on

streamflow can be filtered with a climate elasticity model (CEM;

Schaake, 1990; Sankarasubramanian, Vogel, & Limbrunner, 2001) that

expresses the rate of streamflow change as the rate of change of a

set of climate parameters, such as precipitation and temperature (Fu,

Charles, & Chiew, 2007) or precipitation and potential evapotranspira-

tion (PET) (Hao et al., 2015). Biederman et al. (2015) found that the

CEM with precipitation and temperature parameters was not a signifi-

cantly better model than the CEM based on precipitation alone.

Despite the large number of studies conducted in California, the

Southwestern United States, the Rocky Mountains, and the Southeast-

ern United States, current knowledge about fire impacts on annual

water yields in the United States is fragmentary and based primarily

on only a small number of experimental watersheds in the western

states. The restricted set of fire properties, watershed characteristics,

and climate patterns in these watersheds limits the understanding of

the broader range of possible relationships and effects, and the ques-

tion then is (1) how to adequately combine hydrological data and
methods in order to detect impacts of local fires on water yields at

the watershed scale and (2) how to distinguish these fire impacts from

the effects of other watershed disturbances.

1.1 | Objectives and approach

The objective of this study was to develop and demonstrate a general

framework for the assessment of wildland fire impacts (wildfire and

prescribed fire) on watershed annual water yields by separating the

effects of local fires from the effects of climate variability and other

watershed disturbances. This framework responds to the need to

incorporate wildland fire effects into the assessment of water supplies

in order to adapt planning efforts to the resilience of local water sup-

plies to fire impacts (Martin, 2016) and answers to calls for a useful

tool of fire impact assessment in addition to existing pyrogeographic

frameworks (Bowman, O'Brien, & Goldammer, 2013; Krawchuk &

Moritz, 2014). It relies only on local climate and streamflow data, using

pre‐disturbance and post‐disturbance streamflow data as opposed to

alternative approaches relying on watershed pairs, and combines the

classical techniques of double‐mass and flow duration analysis with

recent techniques including change point analysis, climate elasticity

modeling, and process‐based hydrological modeling. A non‐exhaustive

demonstration of this framework includes three case studies on water-

sheds in three different physiographical regions of the CONUS, that is,

South Carolina (with annual prescribed burning), Arizona, and Califor-

nia (both with wildfires). Special consideration was given to the South

Carolina watershed, where we used the change point model to detect

and characterize multiple types of disturbance in the streamflow data.
2 | METHODS

2.1 | Framework for evaluating wildland fire impacts
on streamflow

The framework for evaluating the impacts of hydrologic disturbance in

watersheds consists of five methods that address various aspects of

hydrological changes and disturbances evaluated for a multiyear

post‐disturbance period with respect to a reference period.

1. Determining the timing of hydrologic disturbance with the change

point model (CPM)

2. Double‐mass analysis of streamflow and precipitation data (DMC)

3. Analysis of precipitation duration curves (PDC) and streamflow

duration curves (FDC)

4. Attribution of changes in streamflow to climate variability and

watershed disturbance using the climate elasticity model (CEM)

5. Comparison with attribution analysis obtained from results of the

process‐based Water Supply Stress Index model (WaSSI)
2.1.1 | Timing the hydrologic disturbance with the change
point model

The CPM (Hawkins et al., 2003; Hawkins & Zamba, 2005) can detect

change points in a continuous time series corresponding with an
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unidentified disturbance such as wildland fire. An undisturbed contin-

uous time series of streamflow may be assumed to follow a single

distribution F0; however, if a change point exists, the time series will

follow a distribution F1 prior to the change point and a distribution

F2 after the change point, where F1 ≠ F2. Consequently, we defined

the null hypothesis for a streamflow series without change points as

follows (after Hawkins & Zamba, 2005; Ross, 2015):

H0 : QieF0 Q; θ0ð Þ i ¼ 1;2;…; T (1)

where discharge Q at any given moment i follows one single distribu-

tion F0, which is a function of Q and a set of parameters θ0. The

alternative hypothesis was defined as follows:

H1 : Qie F1 Q; θ1ð Þ i ¼ 1;2;…; τ

F2 Q; θ2ð Þ i ¼ τ þ 1; τ þ 2; …;T

�
(2)

where Qi follows distribution F1 defined by parameter set θ1 prior to

change point τ and distribution F2 afterwards with a different set of

parameters θ2.

The null hypothesis was tested by running through the entire time

series and calculating the non‐parametric two‐sample Lepage (L) statis-

tic at each time step and evaluating the differences between the parts

of the time series before and after every potential τ. Lepage combines

the Mann‐Whitney (or Wilcoxon rank sum) statistic (denoted U) for

detecting location shifts with the Mood statistic for detecting scale

(dispersion) shifts (denoted M, Lepage, 1971):

L ¼ U2 þM2: (3)

Refer to the Appendix for the formulations of U and M. A change

in streamflow was detected when L exceeded a critical value ht corre-

sponding with a given significance level (α = 0.05) total sample size n.

Lepage‐type tests do not require any knowledge of the underlying dis-

tribution of observations and provide greater statistical power than the

Mann–Whitney, Chi‐square and student's t‐test statistics (Hirakawa,

1974; Lloyd, Freer, Collins, Johnes, & Jones, 2014). Applications

include the detection of abrupt changes in precipitation (Matsuyama

et al., 2002; Vivès & Jones, 2005), sunshine rate (Inoue & Matsumoto,

2007), streamflow (Yang et al., 2009), and the evaluation of the impact

of reservoirs (Huang et al., 2014). Calculations were performed using

the cpm software in R (Ross, Tasoulis, & Adams, 2011; Ross, 2015; R

Core Team, 2014).

2.1.2 | Double‐mass analysis of the precipitation‐
streamflow relationship (DMC)

Double‐mass curves (DMCs) were calculated using the monthly

Parameter‐elevation Regressions on Independent Slopes Model

(PRISM) precipitation and United States Geologic Survey (USGS)

streamflow data to confirm the existence of a break point in the precip-

itation–streamflow relationship indicating a change in water yields.

First, two linear models (the unrestricted models) were fitted to

the reference and post‐disturbance periods separately and one linear

model (the restricted model) was fitted to the pooled data for both

periods. Subsequently, a Chow test was performed to evaluate the

equality of model coefficients of the unrestricted models versus the

restricted model. Monthly data were used to allow a more precise
separation of reference and post‐disturbance data, which was neces-

sary given a variable seasonal timing of disturbance events in differ-

ent watersheds. See Appendix for equations.

2.1.3 | Characterization of changes in precipitation dura-
tion and flow duration (precipitation duration curve and flow
duration curve)

In order to characterize and visualize changes in the time distribution

of precipitation and streamflow between the reference and post‐

disturbance period, we calculated the reference and post‐disturbance

PDCs and FDCs for each watershed according to the flow duration

principle (Foster, 1934; Vogel & Fennessey, 1994; see Appendix). Pre-

cipitation duration curves were calculated from Daymet precipitation

aggregated to the watershed scale, and flow duration curves were cal-

culated from the USGS GAGES‐II daily streamflow data. We then iden-

tified changes in the number of precipitation days (or “rain” days) >1mm

and the number of extreme precipitation days with ≥50.8 mm (Karl,

Knight, & Plummer, 1995).

2.1.4 | Attribution of changes in streamflow to climate
variability and watershed disturbance using the climate elas-
ticity model

The CEM was used to identify the portion of change in mean annual

streamflow attributed to climate variability as opposed to the change

caused by a disturbance. We calculated for each watershed a reduced

one‐parameter model (CEM0) and a two‐parameter model (CEM1).

The one‐parameter model was formulated as (Schaake, 1990;

Sankarasubramaniam et al., 2001)

CEM0 :
dQ

Q0

¼ α
dP

P0
(4)

and the two‐parameter model as

CEM1 :
dQ

Q0

¼ α
dP

P0
þ β

dPET

PET0
(5)

where the change in mean annual streamflow as a fraction of mean

annual streamflow during the reference period dQ=Q0 is a linear

function of the relative changes in mean annual precipitation dP=P0

and potential evapotranspiration dPET=PET0. Parameters α and β were

fitted to the data of the reference (pre‐disturbance) period.

In order to derive the contribution of watershed disturbance, or

more specifically fire disturbance in the case of the AZ and CA

watersheds, we assume that the observed change in streamflow (ΔQ)

is comprised of a climate induced change (ΔQclim) and a component

attributed to the hydrologic disturbance (ΔQdist) (Wei & Zhang, 2010;

Hao et al., 2015):

ΔQ ¼ ΔQclim þ ΔQdist (6)

Next, the one‐parameter and two‐parameter CEMs of change in

streamflow were evaluated with the corrected (small sample) Akaike's

information criterion (AICc) (Sugiura, 1978; Hurvich & Tsai, 1991;

definition given in the Appendix).
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2.1.5 | Process‐based attribution of streamflow changes
with the Water Supply Stress Index (WaSSI) model

The process‐based Water Supply Stress Index (WaSSI) was calculated

to corroborate the results of the attribution analysis obtained with

the empirical CEM. WaSSI (Sun, McNulty, Moore‐Myers, & Cohen,

2008; Sun et al., 2011) has been used in CONUS‐wide studies, for

example, to evaluate environmental change impacts on ecosystem ser-

vices (Caldwell, Sun, McNulty, Cohen, & Moore Myers, 2011), effects

of urbanization and water withdrawals on streamflow (Caldwell, Sun,

McNulty, Cohen, & Moore Myers, 2012), impacts of dairy production

on water scarcity (Matlock et al., 2013), and drought effects in national

forests (Sun et al., 2015a). Monthly precipitation and air temperature

from gridded PRISM data were scaled to the 12‐digit HUC watershed

scale and used as input for WaSSI to calculate monthly water balances

for eight land cover classes for the reference and post‐disturbance

period. Water yield simulations in WaSSI provided a baseline account-

ing for climate variability, and a comparison with observed streamflow

allowed us to estimate the non‐climate or disturbance contribution as

a function of time (Equation 6). A difference with the CEM approach is

that this method uses monthly time intervals instead of the reference

and post‐disturbance period totals. Processes simulated in WaSSI
FIGURE 1 Framework for evaluating wildland fire effects on streamflow
include infiltration, ET, surface runoff, snow accumulation and snow

melt, soil water storage, and streamflow. Infiltration, soil storage, and

surface runoff were computed with algorithms from the Sacramento

Soil Moisture Accounting Model (Burnash, Ferral, & McGuire, 1973;

Burnash, 1995) with input from the State Soil Geographic Database

(STATSGO; Natural Resources Conservation Service, 2012) and 2005

domestic water usage data (USGS; Kenny & Juracek, 2012). A com-

plete description of the WaSSI model can be found in Sun et al.

(2008, 2011) and Caldwell et al. (2012).

2.1.6 | Navigating the framework

The methods described above were integrated into one framework for

evaluating the impacts of hydrologic disturbance in watersheds

(Figure 1). There are multiple routes to navigate the framework,

depending on available data and the nature of these data for a given

watershed. For watersheds with a single fire disturbance in the

evaluated period, the ignition date (if known) can be used to separate

the reference and post‐disturbance periods and no CPM is needed.

The procedure for watersheds with multiple disturbances of any type

(wildfire, active prescribed burning policy, logging operations, storm

damage, construction, water management, or water use) relies on a



HALLEMA ET AL. 5 of 20
CPM of the streamflow time series to find the timing of the disturbance

event(s) with the greatest hydrologic impact. A single abrupt change in

streamflow over a given time will yield a single significant maximum

value Lmax in which case the corresponding time separates the refer-

ence and post‐disturbance periods. Conversely, if there is no significant

Lmax, there is no significant change in streamflow. Regardless,

streamflowmay still exceed the discharge predicted based on precipita-

tion, which can be tested using the Chow test of differences in the dou-

ble mass relationship between multiyear streamflow and precipitation.

If the corresponding F statistic is not significant, the post‐disturbance

change in streamflow is minor or short‐lasted with regard to the length

of the evaluated period, in which case the attribution analysis is not

meaningful. Conversely, if the corresponding F statistic is significant,

there is likely a non‐climate contribution to changes in streamflow,

which can be calculated with the CEM and corroborated with results

from the WaSSI simulation. The PDC and FDC help to characterize

changes in extreme precipitation and streamflow that may contribute

to long‐term changes in water supply. The normal calendar year is used

for the analyses based on annual data, with the year in which the

disturbance occurred included in the post‐disturbance period.

2.2 | Datasets

2.2.1 | Streamflow data

An overview of all used datasets is given in Table 1. Daily streamflow

data were retrieved for the flow stations 2130900 (SC), 9508300

(AZ), and 11274630 (CA), and after extracting the data for selected

watersheds, daily values were aggregated to monthly and annual

watershed yields. Watershed boundaries were determined using the

GMTED2010 elevation model (236 × 236 m resolution).

2.2.2 | Climate data

Monthly climate precipitation was obtained from the PRISM gridded

dataset (Spatial Climate Analysis Service, 2004) and scaled to the

watersheds for the purpose of subsequent analysis in the change point

analysis, double‐mass analysis, attribution analysis, and hydrologic

simulations. Daily precipitation was extracted from the gridded

Daymet dataset (Thornton et al., 2014) and scaled for the precipitation

and flow duration analysis. Monthly PET was calculated using Hamon's

method as a function of monthly aggregated (mean) air temperature

and day length (Hamon, 1961; Sun et al., 2011).

2.2.3 | Fire data and vegetation index

The Monitoring Trends in Burn Severity dataset (MTBS; Eidenshink

et al., 2007) integrates fire data from across the CONUS from 1984

to present. MTBS characterizes burn severity (30 × 30 m cells) of an

area within fire perimeters based on the differenced normalized burn

ratio (dNBR; Key & Benson, 2006) and the relative differenced normal-

ized burn ratio (RdNBR; Miller & Thode, 2007), which are calculated

from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper

(ETM+) images using the reflectance in near‐infrared (Landsat band 4)

and mid‐infrared (Landsat band 4) recorded before and after a fire.

These data have been used to analyze wildfire trends (Dennison,

Brewer, Arnold, & Moritz, 2014) and forest disturbance (Hart,

Schoennagel, Veblen, & Chapman, 2015) among others. MTBS data
were used to characterize the burn severity within the watersheds,

after which we determined the temporal evolution of MODIS normal-

ized difference vegetation index (NDVI) for each burn severity class in

percentage.
2.3 | Study watersheds

We selected three burned watersheds in different regions of the

CONUS, each with a significant burned area to drainage area ratio

(>5%) and a minimum drainage area of 25 km2, to demonstrate the

proposed framework (Figure 2, Table 2).

2.3.1 | Black Creek watershed, South Carolina with pre-
scribed burning (34.51°N, 80.18°W)

The Black Creek watershed (henceforward referred to as the SC

watershed) is part of the greater Lower Pee Dee subbasin and the larg-

est of the three watersheds by area (295.4 km2). It also has the lowest

altitude (79–219 m) and smallest mean gradient (2.5%) and consists of

grassland (21%), evergreen forest (33%, mostly longleaf pine), and

deciduous forest (10%; Figure 3a). Woody wetlands are found along

the Black Creek and its tributaries. The 30‐year average precipitation

(1981–2010) was 1,144 mm, and PET was 981 mm. Climate was

characterized as temperate without dry season and with hot summers,

or Cfa (Godfrey, 1999; Kottek, Grieser, Beck, Rudolf, & Rubel, 2006).

Annual prescribed burning has been conducted in the Carolina

Sandhills National Wildlife Refuge (NWR) in the lower portion of this

mixed land use watershed since at least the 1940s, and 40% of the

watershed was burned between 2004 and 2014 (Figure 3a). Burn

severity was typically low. Fire impact on the interannual variability

of vegetative phenology evidenced by the NDVI was limited, with

seasonal NDVI values peaking between 73% and 74% and minimum

values between 54% and 57% (Figure 4a).

2.3.2 | Wet Bottom Creek watershed, Arizona, and 2004
Willow wildfire (34.16°N, 111.69°W)

The Wet Bottom Creek watershed (or AZ watershed) drains 93.0 km2

and has the greatest variations in terrain of the three watersheds, with

slopes ranging between 0.1% and 76.1%. The upper parts with an alti-

tude up to 2,157 m received snowfall during some winters and were

covered with evergreen forest (57%) of pinyon juniper and ponderosa

pine (Figure 3b). These upper parts drain through a narrow rocky valley

vegetated with shrubs (43%, mostly chaparral). The climate is temper-

ate with dry and hot summers (Csa; Godfrey, 1999) with an annual pre-

cipitation of 473 mm; however, the lower part in the western extremity

of the watershed is drier. The average PET of 873mm exceeded precip-

itation. The Wet Bottom Creek is a tributary of the Verde River, one of

the last free‐flowing perennial rivers in Arizona. Groundwater pumping

in parts of the Verde River basin has raised concern about the effects on

riparian vegetation (Leake & Pool, 2010). The Willow wildfire that

started on June 24, 2004 affected 83.6% of the watershed, with

under/unburned to low burn severity (10.7% and 46.3%, respectively,

of the watershed) on the more sparsely vegetated south‐facing slopes

and moderate burn severity (26.2% of the watershed) on the north‐fac-

ing slopes (Figure 3b). Approximately 0.5% of the watershed was

affected by high severity burning. Fire reduced NDVI from
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FIGURE 2 Locations of the Black Creek (SC),
Wet Bottom Creek (AZ), and Del Puerto
Creek (CA) watersheds within the United
States, and mean annual precipitation for the
period 1981–2010 (PRISM)
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approximately 0.60 to 0.26 (moderate and high burn severity) and from

0.41 to 0.29 (low burn severity). After 2 years, NDVI showed signs of

initial recovery in the severely affected evergreen forest (Figure 4b),

and in 2014, 10 years after the fire, summer peak NDVI was 0.48 and

demonstrated progress in post‐disturbance recovery despite a low

precipitation of <400 mm in 2006, 2009, 2011, and 2012.

2.3.3 | Del Puerto Creek watershed, California, and 2003
Deer Park wildfire (37.48°N, 121.20°W)

The Del Puerto Creek watershed (hereafter CA) spans 187.4 km2

and drains into the agricultural Central Valley. Average annual pre-

cipitation was a mere 418 mm, and PET was 904 mm. The upper

part of the CA watershed consisted of scrubland/shrubland with

sagebrush and chaparral (57% of the watershed; Figure 3c). Overall,

the CA watershed had the lowest forest cover of the three water-

sheds. Before disturbance, the east‐facing headwater slopes had a

mixed forest cover (14%, canopy cover 25–50%) with pine oak and

eucalyptus and the lower eastern part of the watershed was mostly

grassland (28%). The Deer Park wildfire started on July 20, 2003 on

a hillslope in the upper part of the watershed and burned 14.1% of

its area (Figure 3c), with moderate to high burn severity (3.8% and

1.2%, respectively, of the watershed) on the chaparral covered

hillslopes and unburned/underburned to low burn severity near

streams (4.9% and 4.1%, respectively). The NDVI in the severely

burned area decreased (Figure 4c) from around 0.58 during the sum-

mer peak to around 0.30 in autumn. Areas categorized as unburned

to underburned likewise decreased in NDVI during the same period,

from approximately 0.55 to 0.33.
3 | RESULTS

We identified the 5‐year reference (pre‐disturbance) and 5‐year post‐

disturbance periods immediately preceding and following the wildfire

starting dates reported in the MTBS dataset for the AZ and CA water-

sheds, respectively. Due to the large number of prescribed fires

reported for the SC watershed (44 between 1984 and 2013; MTBS),

we here used the change point model to identify the most significant

disturbance in the streamflow data for the period overlapping with

the MTBS and PRISM datasets (1984–2012). The remainder of the

analysis was performed according to the framework and included the
evaluation of DMC, PDCs and FDCs (discussed in the Appendix),

CEMs, and WaSSI hydrologic simulations. Evaluated periods follow

the calendar year, chosen as a trade‐off between the hydrologic year,

often starting on October 1 in the CONUS and the fire season, which

can start as early as March or April. The AZ watershed had the greatest

increase in 5‐year post‐wildfire annual water yield (+266%), while the

SC and CA watersheds had a lower post‐wildfire annual water yield

(−39% and −64%, respectively).
3.1 | South Carolina watershed

3.1.1 | Change point analysis of streamflow data

Critical value hn was exceeded in the years 1998 through 2000 using

an annual time step (Figure 5a). Greater statistical power was obtained

at a monthly time step (Figure 5b), which also allowed us to select the

month with the greatest L (May 1999) as the disturbance change point

to be evaluated.

3.1.2 | Double‐mass curves

The disturbance of May 1999 also represents a break point in the rela-

tionship between cumulative streamflow and precipitation (p < 10−6)

(Figure 6a), with the coefficient of the unrestricted linear model (runoff

coefficient) declining from 0.419 (5 year reference) to 0.306 in the

post‐disturbance period. The corresponding residual plot offers a more

detailed view of the seasonal oscillations representing the time lag

between cumulative precipitation and runoff caused by higher runoff

in the winter, when soils are wetter than in the summer. Even com-

pared with the 10‐year reference period, the change in runoff is still

significant (p < 10−6).

3.1.3 | Attribution of streamflow change (climate elasticity
model)

The one‐parameter (precipitation) CEM0 was retained at the expense

of the two‐parameter (precipitation and PET) CEM1 for all three

watersheds and evaluated periods (Table 3), based on a higher AICc

value. Each CEM1 with a positive fitted value of β was rejected

because this wrongly implies a scenario where a higher PET leads to

more streamflow. The 5‐year CEM0 predicted a −242‐mm (−47%)

change in annual streamflow versus a −201‐mm (−39%) observed

change (Table 3 and Figure 7a). The difference between observed



TABLE 2 Location, vegetation, hydrologic characteristics, and fire characteristics of the three study watersheds

Black Creek, South
Carolina (SC)

Wet Bottom Creek,
Arizona (AZ)

Del Puerto Creek,
California (CA)

Location Carolina Sandhills NWR Tonto National Forest Diablo Range, Stanislaus
County

USGS gauging station ID 2130900 (non‐reference) 9508300 (reference) 11274630 (reference)

Physiography

Drainage area (km2) 295.4 93.0 187.4

Altitude (m) 79–219 715–2157 75–1113

Slope (range) (%) 2.5 (9.1) 20.1 (76.0) 19.4 (54.3)

Vegetation

Pre‐disturbance land cover
and canopy cover (NLCD 2001)

Evergreen Forest (33%,
canopy cover 50–75%)

Evergreen Forest (57%, canopy
cover >25%)

Shrub/Scrub (57%)

Grassland/Herbaceous (21%) Grassland/Herbaceous (28%)
Mixed Forest (14%, canopy

cover 25–50%)
Woody Wetlands (11%, canopy

cover >50% and >75%)
Shrub/Scrub (43%)

Deciduous Forest (10%, canopy
cover 50–75%)

Vegetation species Longleaf pine Pinyon juniper, ponderosa pine,
chaparral

Sagebrush, chaparral, pine oak,
eucalyptus

Ecosection (province) Southern Appalachian
Piedmont
(Southeastern Mixed Forest)

Tonto Transition (Colorado
Plateau Semi‐Desert)

Central California Coast
Ranges
(California Coastal Range
Open Woodland‐Shrub‐
Coniferous
Forest‐Meadow)

Climate (1981–2010)

Annual precipitation (snow water
equivalent) (mm)

1144 (29) 473 (126) 418 (21)

Annual PET (mm) 981 873 904

Annual water yield (mm) 379 (33%) 112 (24%) 41 (10%)

Climate classification 1961–1990
(Godfrey, 1999)

Cfa (humid subtropical) Csa (Mediterranean with hot
summers)

Csa (Mediterranean with
hot summers)

Fire characteristics (MTBS)

Name Prescribed burning (Rx) 2004 Willow Wildfire 2003 Deer Park Wildfire

Start date Annually from March 6/24/2004 7/20/2003

Burn severity Low Low to moderate Moderate to high

Burned area to watershed area ratios 7.1% (2004) 83.6% (this fire) 14.1% (this fire)
40% (2004–2013) 75% (1984–2013) 30% (1984–2013)

(1) Under/Unburned to Low 1.4% (2004) 10.7% 4.9%

(2) Low Burn Severity 4.0% (2004) 46.3% 4.1%

(3) Moderate Burn Severity 1.7% (2004) 26.2% 3.8%

(4) High Burn Severity 0% (2004) 0.5% 1.2%
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change in streamflow ΔQ0 and the contribution of climate Δ−Qclim

predicted by the CEM amounts to +42 mm (+8%) unaccounted for

by climate and is subsequently assumed to represent the net positive

contribution of watershed disturbance Δ−Qdist . The decrease in

annual streamflow was −178 mm (−36%) relative to the 10‐year ref-

erence period versus 201 mm (−39%) relative to the 5‐year reference

period, and lower precipitation was the dominant factor in both cases

(Table 3 and Figure 7).
3.1.4 | WaSSI hydrologic simulation

The WaSSI simulated streamflow (Figure 8a) confirmed the declining

trend in streamflow found in the attribution analysis. The found date
of April 1998 corroborates with the significant time interval found in

the change point analysis.
3.2 | Arizona watershed

3.2.1 | Double‐mass curves

Values of the F statistic were comparable with the SC values (p < 10−6);

however, here, the linear model coefficient (runoff coefficient)

increased considerably, from 0.132 (5‐year reference period) to

0.393 (Figure 6b), in response to the exceptionally wet period

between November 2004 and February 2005 (80 to 165 mm/month).

The increase in runoff coefficient with respect to the 10‐year refer-

ence period was in the same order of magnitude. The effect of the



FIGURE 3 2001 Land cover (left panel) and burn severity (right panel) for the (a) Black Creek watershed (SC) with a series of 44 prescribed burns
conducted between 2004 and 2013; (b) Wet Bottom Creek watershed (AZ) and the 2004Willow Fire; and (c) Del Puerto Creek watershed (CA) and
the 2003 Deer Park Fire (National Land Cover Database, 2011; Monitoring Trends in Burn Severity, 2014). Legends apply to all watersheds
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wildfire was observed during the first winter, where the residual plot

shows that runoff is nearly 400 mm more than expected. The runoff

coefficient had not recovered to its pre‐disturbance value 5 years

after the fire in 2009, based on the increasing trend in the residual

plot (Figure 6b), or even as late as 2012 verified with additional

analysis.

3.2.2 | Attribution of streamflow changes (climate elastic-
ity model)

The 5‐year CEM0 predicted an increase in streamflow of 24 mm

(+47%) corresponding to an increase of precipitation from 437 to

507 mm. This predicted increase in streamflow fell short of the

observed increase of +134 mm (+266%), with the difference

(+110 mm or +219%) representing the effect of the 2004 Willow Fire

in this watershed. Although fire disturbance is responsible for a con-

siderable increase in runoff, the effect was amplified by increased

precipitation (Table 3 and Figure 7a). Although the change in
streamflow was much smaller evaluated over a longer period, rela-

tive contributions (Table 3 and Figure 7b) of climate and fire dis-

turbance were proportional to the changes observed relative to the

5‐year reference period.
3.2.3 | WaSSI hydrologic simulation

The residual plot in Figure 8b (right panel) shows that the hydrological

model reproduced the observed values correctly until the autumn of

2000 but was unable to simulate the intermittent character of

streamflow after this date. While the dry winters were simulated cor-

rectly, the discrepancy was possibly related to low winter precipitation

in 2003 and 2008, which represented a greater challenge for calculat-

ing water balances and led to an overestimation of the non‐climate

contribution to streamflow changes (Figure 8b, right panel). Nonethe-

less, the model simulated the dynamic of rapid increase in streamflow

in November–December 2004 following the wildfire, while the



FIGURE 4 1981–2010 normal annual precipitation (PRISM), observed
streamflow (USGS), and bi‐weekly normalized difference vegetation
index (NDVI) for MTBS burn severity classes (1—under/unburned to
low, 2—low, 3—moderate, 4—high, 5—increased greenness) in the (a)
Black Creek watershed (SC), (b) Wet Bottom Creek watershed (AZ),
and (c) Del Puerto Creek (CA)

FIGURE 5 Change point analysis of the SC streamflow data for the
period 1984–2012. Shown are the streamflow time series and
Lepage test statistics evaluated for (a) annual time intervals and (b)
monthly time intervals. The vertical dashed line indicates the estimated
change point location corresponding with the greatest value of the
Lepage statistic, and hn marks the statistic value for a significance level
of α = 0.05

10 of 20 HALLEMA ET AL.
observed streamflow increased even more rapidly than before, provid-

ing minimal additional evidence of a non‐climate contribution to

streamflow change.
3.3 | California watershed

3.3.1 | Double‐mass curves

There was a significant break point in the DMC corresponding with the

July 2003 Deer Park wildfire (p < 10−6), and the runoff coefficient

increased from 0.04 (4%) to 0.058 (5.8%; Figure 6c, left panel). Unlike

the AZ watershed, this increase was not observed until the second
winter after the fire, in December 2004. The DMC for the 10‐year ref-

erence period (Figure 6c, right panel) shows that there is a moment of

even greater change in the DMC corresponding with the exceptionally

high rainfall of 158 and 251 mm in January and February 1998,

respectively.
3.3.2 | Attribution of streamflow changes (climate
elasticity model)

Lower precipitation in the post‐disturbance period (342 mm against

453 mm in the reference period) resulted in −33 mm (−64%) less

streamflow. Judging from these numbers, it would be difficult to argue

that the 2003 Deer Park Fire could have resulted in more runoff;

however, CEM0 predicted a much greater reduction of streamflow

(−52 mm or −102%) than observed, meaning that fire disturbance itself

increased the streamflow by +19 mm (+38%). The disturbance partly

offset the effect of a declining annual precipitation on annual

streamflow relative to the 5‐year reference period (Figure 7a). When

evaluated for the 10‐year reference period, the CEM fitted to this

period could explain all of the change in streamflow.



FIGURE 6 Double‐mass and residual plots of monthly streamflow (USGS‐GAGES‐II) and monthly precipitation (PRISM) for the period that includes
5‐year pre‐disturbance and 5‐year post‐disturbance (left panel) and for the period that includes 10‐year pre‐disturbance and 5‐year post‐disturbance
(right panel). The DMCbased on the restricted linear model is represented by the orange dashed line, while the blue and red lines represent the DMC
based on the unrestricted linearmodels fitted to the reference and post‐disturbance periods, respectively. The residual plots show the deviationswith
respect to DMC fitted to the corresponding reference period
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3.3.3 | WaSSI hydrologic simulation

The WaSSI simulation for this watershed was complicated by the

systematic overestimation of summer and winter runoff, resulting in

a propagated error in cumulative water yield (Figure 8c, center panel).

Therefore, the WaSSI results for the CA watershed could not be

interpreted for the purpose of disturbance analysis.
4 | DISCUSSION

The framework combines hydrological data and methods into a single

procedure for the assessment of wildland fire impacts on water yields

in single watersheds, and as such, presents a more practical assessment

tool compared with traditional paired watershed analysis.
4.1 | Can the framework quantify wildland fire
impacts on streamflow?

Yes, the framework uses CPM and DMC to detect changes in

streamflow, and subsequently, a CEM to distinguish between the

respective contributions of climate and wildland fire or other non‐cli-

mate related disturbances to that streamflow change. CEM results

can subsequently be compared with an attribution analysis based on

WaSSI hydrologic simulations. If other non‐climate disturbances
occurred than wildland fire alone, it is possible to estimate the relative

impact of these disturbances using the CPM. As demonstrated for the

three case studies, the contribution of fire disturbance to streamflow

change can vary from negligible (SC) to substantial (AZ) or somewhere

in between (CA).

Wildfire had an increasing effect on 5‐year water yields in the AZ

and CA watersheds; however, the net amount of change in streamflow

and the direction of this change also depended on climate trends: an

amplified response in conjunction with a positive trend in precipitation

in the AZ watershed and an attenuated response in the CA watershed

where post‐wildfire precipitation was lower. The framework found an

increase in runoff coefficient of the CA watershed from 4% to 5.8%

despite a −64% lower yield that agrees with the steady baseflow

observed throughout most of the winter in the post‐fire period. The

modest contribution of wildfire to streamflow change in the CA water-

shed was furthermore consistent with the rapid recovery of NDVI, and

conversely, the slow recovery of NDVI in the AZ watershed agreed

with the large contribution of wildfire to streamflow change there.

The CEM associated streamflow changes in the SC watershed

mainly to climate rather than to fire. Climate was quite variable with

a wet winter in 1998 (September 1997 to April 1998 were all months

with >100 mm) followed by a period of less precipitation and lower

mean annual number of extreme precipitation days >50.8 mm (see

Appendix). The change point model linked the time of maximum
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FIGURE 7 Attribution of the mean change in
annual streamflow to climate variability (pre-
cipitation) and (non‐climate) watershed dis-
turbance, given in % change in the 5‐year
post‐disturbance (including the year in which
the disturbance occurred), versus the five
preceding years (a) and 10 preceding years (b),
respectively
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streamflow disturbance (Lmax) to May 1999, where the CEM attributed

the observed loss in water yield of −39% to a negative (−47%) climate

contribution attenuated by a positive (+8%) non‐climate contribution

(5‐year reference period). The change point analysis furthermore

detected significant change in streamflow for the extended period

between 1998 and 2000 (annual time step; Figure 5a) and

1995–2011 (monthly time step; Figure 5b), corresponding with

periods of increased interannual and monthly variability in streamflow,

respectively.

Although the framework was designed to quantify effects of cli-

mate trends and wildfire disturbance, other types of disturbance can

also be identified when the approximate dates of disturbance found

by the CPM can be linked to known events. The modest increase in

streamflow in the SC watershed attributed to non‐climate factors

could not be linked with individual‐prescribed fires, which agrees with

earlier observations by Troendle, MacDonald, Luce, and Larsen (2010)

that low severity prescribed fires are unlikely to influence water yield,

especially compared with the effects of high severity wildfires.

Estimates say that at least 20% of basal area of vegetation must be

removed to cause any significant change in streamflow (Bosch &

Hewlett, 1982; Stednick, 1996). Prescribed burnings followed a regular

pattern (small fires with low burn severity; Carolina Sandhills NWR,

1998; 1999); no wildfires were reported, and bark beetle activity was
very low (Carolina Sandhills NWR, 1998; Carolina Sandhills NWR,

1999; South Carolina Forestry Commission, 1999). Therefore, the

change in streamflow was possibly the result of a combination of

dam failure (Carolina Sandhills NWR, 1994; 1999), beaver activity

(Carolina Sandhills NWR, 1999), major weather events (severe thun-

derstorm on May 6, 1999 that killed many trees; National Climatic

Data Center Storm Events Database, retrieved February 8, 2016; and

an ice and snowstorm on January 24–25, 2000; Carolina Sandhills

NWR, 2000), or (unverified) water management and water usage.
4.2 | Does the framework account for overlapping
watershed disturbances?

The framework can separate climate effects overlapping with non‐

climate effects; however, multiple overlapping non‐climate distur-

bances are sometimes difficult to disentangle. This is the case for

the CA watershed, where the DMC has no clear break point for the

2006 Canyon Fire even though it burned an area similar in size to the

2003 Del Puerto Creek Fire. Hydrologic responses to overlapping

watershed disturbances are furthermore complicated by the interaction

with extreme climate events and the gradual recovery of vegetation and

evapotranspiration. Also, not all break points in the DMC correspond

with non‐climate disturbance. For example, the 10‐year reference



FIGURE 8 Cumulative contributions of climate variability on streamflow simulated in WaSSI and (non‐climate) watershed disturbance calculated
as the difference between observed and simulated cumulative streamflow
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period preceding the 2003 wildfire in the CA watershed includes both

the strong El Niño year 1997–1998 with exceptionally high rainfall

and the drier La Niña years 1998–1999 and 1999–2000, where the 5‐

year reference period included only the La Niña years. El Niño effects

are strong in this part of California (Hoell et al., 2016), and the high

precipitation during 1997–1998 phase may have resulted in erosion

and alteration of the streambed, causing a break point in the DMC

(Figure 6c).

With a larger sample size and wider range of annual precipitation

and runoff, a 10‐year reference period will generally provide more

robust estimates of CEM coefficients than the a 5‐year reference

period (see also Figure 4c). Nevertheless, this does not imply that the

10‐year CEM improves the accuracy of the attribution analysis for

individual wildfires because, in the case of the CA watershed, there

was another smaller fire (1996) in this period. The length of the evalu-

ated reference and post‐disturbance periods is a trade‐off between the

amount of hydrological data needed to construct a CEM on one hand

and the likelihood of overlapping disturbance effects on the other

hand. Choosing an appropriate length is very challenging in California
watersheds where high fire frequency meets extreme climate and

ephemeral runoff, and in this case, the true wildfire effect on runoff

may lie somewhere between the values attributed using the 5‐year

and 10‐year reference periods, respectively. It will be useful to evalu-

ate whether the inclusion of antecedent climate conditions (tempera-

ture days, precipitation, and snow water equivalents) and monthly

variance of high resolution precipitation data (Hao et al., 2015)

improves the CEM. Linking hydrologic disturbance directly to burn

severity or MODIS NDVI may also help validate the attribution analy-

sis, although the more complex disturbance patterns may necessitate a

distributed ecological‐hydrological model.
4.3 | Which climates work best with the framework?

The accuracy of the attribution analysis depends on the performance

of models in the framework and may be considered acceptable for

temperate, humid, and Mediterranean climates provided that annual

water yield efficiencies (runoff coefficients) are approximately con-

stant during the pre‐disturbance and post‐disturbance periods,
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respectively. The precipitation‐only based CEMs with the best perfor-

mance in terms of AICc (low value reflecting the greatest maximum

likelihood for n observations) were obtained for the SC watershed

(Table 3), with values of AICc = 6.16 (5‐year reference) and AICc = −2.45

(10‐year reference). This is explained by the stable annual water yield

(of 33%) and perennial streamflow resulting from year‐round precipita-

tion, which can be accurately represented in a linear CEM. CEM per-

formance for the AZ and CA watersheds was lower (greater AICc

values) because of a greater seasonal and interannual variability in

the precipitation–streamflow relationship associated with snowmelt

(AZ) and El Niño effects (CA). Notwithstanding, snow is the dominant

hydrologic input in much of the western United States (Rocky

Mountains, Sierra Nevada, and Cascade Ranges), and therefore, snow

processes (annual snowfall, snowmelt, and sublimation) are important

controlling factors of streamflow disturbance in this area (Troendle &

King, 1985; Harpold et al., 2014). Long‐term and short‐term drought

is common in regions like Southern California, Nevada, and other parts

of the Southwest, where it represents a contributing factor to wildfire

and affects streamflow (Littell, Peterson, Riley, Liu, & Luce, 2016).

Hydrologic response to wildfire is highly nonlinear in snow‐dominated,

arid, or drought‐affected systems, and under such conditions, the

framework would benefit from a more physically based nonlinear

CEM.
4.4 | What are some limitations of the framework?

Other limitations are related to the way in which the attribution anal-

ysis identifies disturbance effects. Fire impacts vary with burn severity,

which affects the amount of leaf area reduction. High burn severity

reduces evapotranspiration drastically, increases net precipitation,

and leaves the soil exposed to direct rainfall impact (Winkler et al.,

2010). Post‐fire soil surface sealing and heat‐induced soil water repel-

lency change the amount of runoff generated along the hillslope

(Larsen et al., 2009; Ebel, Moody, & Martin, 2012), while the spatial

sequence of burned areas controls how much of the generated runoff

is transported downhill (Moody et al., 2016). Storm flow studies

emphasize the importance of the organization of flow paths on the

timing of flow delivery at the base of the hillslope (Hallema & Moussa,

2014; Hallema, Moussa, Sun, & McNulty, 2016) and the watershed

(Hallema, Moussa, Andrieux, & Voltz, 2013); however, the framework

lumps all these effects together. This eliminates the possibility to eval-

uate wildland fire impacts on individual hydrological processes (e.g.,

infiltration and storm flow generation) but also creates the possibility

to evaluate wildland fire effects on a much wider range of watersheds.
4.5 | Why not use either change point model or
double‐mass curve to evaluate disturbances instead of
both?

The CPM and DMC were used to evaluate slightly different types of

disturbances and are complementary tools in the framework. The

CPM was used to detect observed changes in streamflow, while the

DMC was used to evaluate changes in water yield efficiency

(streamflow expected based on precipitation). This is necessary

because wildfire and precipitation trends can partly cancel each other
out (CA watershed) in which case streamflow data alone may not be

sufficient to find the timing of the disturbance. On the other hand,

the CPM can detect multiple disturbances (with the Lepage test),

where the classic DMC approach evaluates only one disturbance at a

time (F test). Therefore, the inclusion of both CPM and DMC offers

the best chances of finding all significant disturbances. The disadvan-

tage of CPM is that the Lepage statistic for intermittent or ephemeral

streamflow series will rarely be significant (L > ht given α) if there are

many months out of the year with zero flow.
5 | CONCLUSIONS

A framework was presented for the assessment of wildland fire

impacts on annual water yields in watersheds. This framework uses a

change point model to identify and assess multiple disturbances where

existing and a climate elasticity model to determine the contributions

of climate variability and wildland fire to streamflow changes over a

multiyear period. Case studies showed that the framework can detect

delayed hydrological responses to wildfire and establish whether wild-

fire enhanced or attenuated streamflow regardless of precipitation

trends during the period of evaluation (AZ and CA watersheds). In

the third case study (SC watershed), change in streamflow could not

be linked to prescribed fire but was chiefly attributed to a declining

trend in precipitation.

Based on the outcomes, we conclude that the framework has a

potential to capture the streamflow impacts of wildfires, prescribed

fires, and various other watershed disturbances under a variety of

watershed characteristics (mountainous and mixed land cover) and cli-

mate conditions (humid and Mediterranean/temperate). The frame-

work is a step‐up from traditional analyses because it can be used

with long‐term streamflow data from a single‐flow station and does

not rely on paired watershed data. Furthermore, if there is more than

one potential disturbance event, the change point model can indicate

the relative impact of each disturbance, making the framework suitable

for a wide range of applications including hydrologic impact assess-

ment of wildland fires, erosion modeling, and post‐fire management.

The challenge in the future development of the framework lies in the

adaptation and proper representation of seasonal and interannual

variability in the precipitation–streamflow relationship in the CEM

for a wider range of conditions, including snowfall/snowmelt patterns,

seasonal drought, and multiyear drought.
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APPENDIX

Methods and statistics

Mann–Whitney statistic

The Mann–Whitney statistic is defined as (e.g., Yue & Wang, 2002;

Ross et al., 2011)

U ¼ min US;UTf g; (7)

US ¼ nSnT þ nS nS þ 1ð Þ
2

−r xið Þ (8)

UT ¼ nSnT þ nT nT þ 1ð Þ
2

−r xið Þ (9)

where the subscripts S and T correspond to the sets of observations

preceding and following the presumed change point τ , respectively,

n is the corresponding number of observations, and r(xi) represents

the pooled rank sums given all observations.
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Mood statistic

The Mood statistic M is given by (Mood, 1954; Ross et al., 2011)

M ¼ M′−μM′

� �
=σM′

��� ��� (10)

where

M′ ¼ ∑xiϵS r xið Þ− nþ 1ð Þ=2ð Þ2 (11)

μM′ ¼
nS n2−1
� �
12

; (12)

σ2
M′ ¼ nSnT nþ 1ð Þ n2−4

� �
=180 (13)

where μM’ and σM’
2 are the mean and variance of the Mood statistic,

respectively.

Precipitation duration (PDC) and flow duration (FDC)

The FDC is the complement of the cumulative distribution of

streamflow that shows the percentage time of a given streamflow was

equaled or exceeded during the period of evaluation. This percentage

represents the probability of exceedance p of a given discharge Q,

where p is defined by (Foster, 1934; Vogel & Fennessey, 1994)

p ¼ 1−P Q≤qf g (14)

Each set of climate and watershed characteristics yields a unique

FDC and typically contains a fast flow component and a delayed flow

component. The FDC changes as a result of climate variability and/or

watershed characteristics, and for this reason, provides an important

indicator for watershed disturbance. The precipitation duration curve

(PDF) was found by substituting streamflow in Equation 7 with

precipitation.

Break point detection in DMC with the Chow test

The first step in detecting a break point in the DMC was to calculate

the cumulative streamflow and precipitation for the reference and

post‐disturbance cumulative data. Next, we determined the DMC by

fitting two separate linear models (the unrestricted models) to the ref-

erence and post‐disturbance periods and estimated the cumulative

runoff as follows:

Qcum:1 ¼ a1 þ b1∙Pcum;1 þ ε1 (15)

Qcum;2 ¼ a2 þ b2∙Pcum;2 þ ε2; (16)

where the subscripts 1 and 2 correspond with the reference and post‐

disturbance periods, respectively, parameters a and b were fitted using

the least squares method, and ε represents the residual error. Note

that in order to obtain a continuous unrestricted DMC, the linear

model for the post‐disturbance period was forced through the break

point approximated by the model for the reference period.

The following step was to fit the restricted linear model to the

pooled data for both periods. This restricted model was defined as

follows:
Qcum;0 ¼ a0 þ b0∙Pcum;0 þ ε0: (17)

If there is no break point in the DMC it follows that

H0 : a1 ¼ a2; b1 ¼ b2: (18)

This was evaluated by testing whether the differences in sums of

squared residuals from the unrestricted model and the restricted

model were statistically significant using the Chow test (Chow, 1960;

Fisher, 1970).

The Chow statistic was calculated as follows (Chow, 1960; Fisher,

1970):

F ¼ SSE0− SSE1 þ SSE2ð Þf g=K
SSE1 þ SSE2ð Þ= n−2Kð Þ ; (19)

with SSE0 as the sum of squared errors for the restricted linear model

representing the DMC for the pooled data, SSE1 and SSE2 as the sum

of squared errors for the unrestricted linear models for the reference

and post‐disturbance periods, respectively, K as the number of regres-

sors and n as the number of samples.

Corrected Akaike's information criterion

The corrected (small sample) Akaike's information criterion (AICc) was

calculated as follows (Sugiura, 1978; Hurvich & Tsai, 1991):

AICc ¼ −2Lk þ 2k þ 2k k þ 1ð Þ
n−k−1

; (20)

where n is the number of observations, Lk is the maximized log‐likeli-

hood, and k is the number of parameters in the climate elasticity model.

The AICc is based on Akaike's information criterion (Akaike, 1973) and

imposes a greater penalty for extra parameters, thus decreasing the

probability of overfitting the climate elasticity model as a result of

adding too many parameters.

Precipitation duration and flow duration curves

South Carolina watershed

Mean annual precipitation in the SC watershed was lower in the post‐

disturbance period (Table 3), and the number of precipitation days

(p{Pd ≥ 1 mm}) decreased from 113 to 101 days/year on average

(exceedance p = .31 and p = .28, respectively; left panel in Figure 9a).

Consequently, the 75th percentile of daily flow Qd decreased from 6.0

to 3.6 m3/s (Figure 9a, right panel). Mean annual number of extreme

precipitation days >50.8 mm also decreased, from 1.6 days

(p{Pd ≥ 50.8 mm} = 0.0044) to 0.6 days (p{Pd ≥ 50.8 mm} = 0.0016),

while the 10th percentile discharge exceedance decreased from 9.1

to 5.4 m3/s.

Arizona watershed

Precipitation in the AZ watershed increased from 437 to 507 mm

in the post‐disturbance period (Table 3), and the mean annual

number of precipitation days likewise increased from 45 days



FIGURE 9 Precipitation duration curves (PDCs) based on Daymet daily precipitation data aggregated to the watershed scale for the 5‐year periods
before (dashed) and after disturbance and corresponding flow duration curves (FDC) based on daily USGS GAGES‐II streamflow data
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(p{Pd ≥ 1 mm} = 0.122) to 49 days (p{Pd ≥ 1 mm} = 0.134; Figure 9b,

left panel). Mean annual number of days with streamflow increased

considerably from to 219 days (p{Qd ≥ 1.0 × 10−3 m3/s } = 0.600) to

272 days (p{Qd ≥ 1.0 × 10−3 m3/s } = 0.746), and the 10th percentile

discharge exceedance is more than tripled (0.50 v. 0.15 m3/s)

(Figure 9b, right). These high flows occurred mostly in the winter when

the mean annual snow water equivalent varied between 8 mm

(November) and 110 mm (January) (reference and post‐disturbance

period combined), and high daily maximum temperatures (12°C during

the coldest month of January) allowed for immediate snowmelt.

California watershed

The CA watershed received less precipitation during the post‐distur-

bance period, 342 mm compared with 453 mm in the reference period
(Table 3). The mean annual number of precipitation days increased

from 54 days (p{Pd ≥ 1 mm} = 0.158) in the reference period to 58 days

(p{Pd ≥ 1 mm} = 0.148) in the post‐disturbance period, while the

number of days with moderate precipitation did not change

substantially (1.2 days [p{Pd ≥ 25.4 mm} = 0.003] v. 1.0 days

[p{Pd ≥ 25.4 mm} = 0.0027], see Figure 9c, left). Heavy precipitation

≥50.8 mm was observed only once, during the reference period.

Despite the minor change in precipitation duration and the 75th

percentile of streamflow (from 7.4 × 10−2 m3/s to ×10−2 m3/s to

7.1 × 10−2 m3/s), flow variability increased substantially. The 10th

percentile discharge exceedance increased by +59% from 0.17

to 0.27 m3/s, while the number of days with streamflow dropped

from 275 days (p{Qd ≥ 1.0 × 10−3 m3/s } = 0.616) to 172 days

(p{Qd ≥ 1.0 × 10−3 m3/s } = 0.472; Figure 9c, right).


